
Scheduling Approaches for Component-Based Real-Time Distributed
Applications

Cássia Yuri Tatibana , Rômulo Silva de Oliveira , Carlos Montez

DAS - Departamento de Automação e Sistemas UFSC - Universidade Federal de Santa Catarina
Campus Universitário, Caixa Postal 476 - CEP 88040-900 - Florianópolis - SC -Brazil

{cytatiba,romulo,montez}@das.ufsc.br

Abstract. Real-time systems grow in complexity and appli-
cability each day. The development of these systems through
component-based approaches has proved to be a promising
alternative. This paper aims a qualitative comparison between
the proposals found in the literature, placing them in the
real-time context, and presenting some gaps to be explored by the
research community. We also propose the adoption of dynamic
guarantee in real-time component-based systems through the
implementation of an acceptance test in component containers.

1. Introduction

Historically, real-time systems developers have avoided in-
directions concerning implementation aspects. This ap-
proach had been used to avoid the lack of predictability
inherent in the use of too many software layers between
real-time applications and required physical resources. Al-
though it assures a certain degree of reliability concerning
applications timing behavior, the increase in utilization and
complexity of these systems raises the necessity to adopt
methods, tools and technologies to improve productivity,
management facilities and quality.

These issues justify the number of works involving
components and real-time systems in the literature [6, 20].
The diversity of real-time applications leads to the devel-
opment of proposals towards the solution of specific prob-
lems. Also, component-based development includes a set
of procedures with great potential for investigation focus-
ing real-time systems development. In this sense, a real-
time component model may be elaborated based on many
different aspects and premises. In this paper we present
important proposals about components and real-time and
point out gaps that raise research possibilities towards dy-
namic guarantees in component-based real-time systems.
We also propose the adoption of an acceptance test to be
implemented by the container in order to provide dynamic
guarantee for these systems.

The rest of this paper is organized in the following
manner: Section 2 describes real-time systems. Section

3 presents the relevant issues when dealing with real-time
systems and components. In the next section, two impor-
tant propositions in the literature are described. Section 5
describes our proposal, the assumptions and related issues.
Finally, our conclusions are presented in section 6.

2. Real-Time Systems
General purpose systems concentrate efforts in the quality
of their results. Although fast executions are desirable, the
approach is always ”do the work using the necessary time”.
Real-time systems have a different approach because the
time is limited. They must assure that it will be possible to
satisfy the deadlines imposed by the system environment.
So, the issue is ”do the work using the available time” [11].

In the literature different proposals about how real-time
systems are scheduled are identified [11]. They may be
classified in three groups according to the offered guaran-
tee: static guarantee (pre-runtime) [18], dynamic guarantee
[12] and best effort [8]. The static guarantee group is the
one capable of offering deterministic predictability. It is
employed in systems that need to assure at pre-runtime that
all tasks will be executed before their respective deadlines.
Obviously, this guarantee is based on a set of assumptions,
including a determined workload and a fault hypothesis.
The static guarantee implies in resource reservation for the
worst case and resource subutilization. Another problem
related to this approach is the need of a bounded and static
workload.

In the best-effort approach there is no pre-runtime guar-
antee about meeting deadlines. The best-effort scheduling,
at most, provides probabilistic predictability based on an
estimated workload. The immediate consequence is the
possibility of system overload. This situation is character-
ized when it is not possible to execute all tasks before their
respective deadlines.

Finally, some proposals provide ”dynamic guarantee”
by determining at runtime which deadlines will be satis-
fied. This approach group executes an acceptance test each

Workshop on Quality of Service for Application Servers - WQSAS 2004



time a new task arrives in the system. The test is based
on analysis that consider the worst case hypothesis only
for the tasks to be guaranteed and all tasks already guar-
anteed. If the test indicates that it is not possible to meet
the deadline of the new task, together with all previously
accepted tasks, the new task is rejected. Therefore, this
mechanism implements dynamic guarantee of newly ar-
rived tasks while preserving the tasks previously guaran-
teed as schedulable.

3. Real-Time Component-Based Systems

In this section, some of the main aspects related to real-
time component-based system development will be dis-
cussed.

Components and Containers

A real-time component model may be structured in two
ways. The component may be complete, containing ap-
plication logic and the necessary infrastructure for its cor-
rect functioning, including real-time aspects. This choice
assures few indirections concerning the component imple-
mentation but requires specific tools as it will require the
component code for configuration.

The other way to structure the component is by sepa-
rating the functional part in the component, and the non-
functional part in the container. While the component
contains only business logic, the container implements all
the functions needed to manage this component, including
the mechanisms for real-time behavior. The separation of
functional and non-functional aspects of an application be-
tween component and container is used in EJB (Enterprise
Java Beans) [2] and CCM (CORBA Component Model)
[3]. This implementation structure contributes to compo-
nent reuse and facilitates its configuration process. All the
real-time aspects to be configured are confined in the con-
tainer.

Execution Environment

The execution environment of a proposed model may
consider two hypothesis: open system and closed system.

In an open system clients are outside the system con-
sidered in the work. This system does not know the client,
it only acknowledges clients requests at the moment they
arrive at the system. Open systems work with unknown
computational workload and usually adopt best effort poli-
cies.

In a closed system clients are part of the system. All the
elements involved in the system execution are predicted
and the communication may be planned with increased
predictability. In these systems, modules or mechanisms

can be deployed as a client part in order to achieve the con-
figuration of end-to-end communication (between compo-
nents and between client and server). Since the computa-
tional workload may be known a priori, it is possible to
provide end-to-end predictability to the application.

The choice of a closed system implies the possibility of
obtaining increased predictability from the generated ap-
plication. The whole system can be designed, configured,
deployed and integrated (establishing connections between
server components and between clients and server) to-
gether. During configuration and implementation steps it is
possible to choose an optimum allocation of components in
containers (considering more than one component in each
container) and of containers in the distributed system hosts.

It is important to notice that the end-to-end predictabil-
ity concerns different issues according to the context envi-
ronment. In open systems end-to-end predictability refers
to timing behavior inside the server: from the moment
the request is acknowledged by the server to the produced
response. For closed systems by the other hand, end-to-
end predictability means the joined behavior of clients and
server: it includes the client timing behavior and all the
server components timing behavior as well.

Communication Latency, Clock Synchronization
and Worst Case Execution Time

Once the real-time system components may be hosted
by different computers, the problem of predictability in a
distributed environment must be considered. The time be-
tween messages sending and receiving must be known or
estimated.

Clock synchronization may be applied to offer a com-
mon time reference to all components involved. This ref-
erence allow the computation of a message travel between
components in different hosts, which improves timing be-
havior management in real-time systems.

The worst case execution time - WCET, is a component
timing property dependent on all the underlying software
and hardware layers. As component connections influ-
ences component execution and cannot be predicted, deal-
ing with the WCET is a complex job.

4. Main Proposals in the Literature

Many real-time component proposals can be found in the
literature. Each of them presents different objectives, ap-
proaches and mechanisms to insert time constraints in the
component-based system lifecycle.

The study of the many approaches exploring aspects
and lifecycle steps of real-time component-based devel-

Workshop on Quality of Service for Application Servers - WQSAS 2004



opment brings about gaps to be fulfilled. The real-time
component-based development is still a relatively young
research area. Many of the works envolving the theme
are concentrated on the early stages of application devel-
opment. The execution model or how all the mechanisms
provided by the component structure will be used at run-
time are not presented yet. As some of these approaches
are very dependent on tools, the development of a whole
system according to them are labored and error prone.

Some interesting researches developed real-time com-
ponents architectures aiming determinism, however most
of them target embedded applications [16, 1, 5]. The works
presented in [19, 15] focus a component framework and
configuration approach intended for distributed environ-
ment, but do not explore the component model execution
behavior or communication aspects.

Most of the approaches addressing embedded systems
offer some sort of timing behavior guarantee since they are
built for specific real-time target platforms. By the other
hand, the approaches concerning distributed environment
have to cope with different problems.

In the distributed real-time context and considering the
previous discussion, two proposals are examined: Cadena
[6] and CIAO/QuO [17](Figure 1). Many others can be
found in the literature [10, 9, 4, 7], however, they are in
accordance with the scenario illustrated in this section.

Static Guarantee Best EffortDynamic Guarantee

Closed System

Open System

Cadena

CIAO/QuO

Figure 1: System Types and Scheduling Approaches
Combination

Different from open systems, in closed systems any of
the scheduling approaches may be implemented: static
guarantee, dynamic guarantee or best effort. As they have
pre-runtime workload information, they can assure the sat-
isfaction of the tasks timing constraints. Cadena is an ex-
ample of a tool used to model, build and verify systems
with these characteristics.

Cadena is a development environment to model CCM
systems [3]. It is employed in the construction of Boeing
applications. This environment is composed by a set of
tools to analyze timing behavior and works as a layer on
top of OpenCCM [13]. Cadena adds forms to the IDLs
of the applications being developed. Through this forms,

time constraints are defined, dependence analysis between
components are made and allocation information are pro-
vided. The application under development together with
Cadena forms and correct functioning references (set by
the developer) is translated into a formal analysis model.

As Cadena is developed by Boeing many assumptions
are made, for example, all Cadena components are event-
triggered. The communication is based on events pro-
duced according to frequencies specified by Cadena forms
and associated to component ports. The Cadena analyzer
checks if the time constraints imposed are feasible and
through interactions with the developer, adjusts the tim-
ing constraints and the components allocation in the dis-
tributed environment.

The CIAO/QuO approach aims at the development of
real-time component-based open systems. Although it al-
lows the development of client components, it cannot pre-
dict or limit the number of clients connected to the server,
neither prevent server overloads. CIAO/QuO is an attempt
to provide services to applications implementing the best
effort policy: CIAO (Component Integrated ACE ORB)
[17] provides static QoS and QuO (Quality Objects) [21]
provides dynamic QoS. This combination CIAO/QuO re-
sults in an environment capable of building components
with QoS properties defined pre-runtime and adaptability
during the application execution.

CIAO proposes the decoupling of reusable, multi-
purpose, off-the-shelf, resource management aspects of the
middleware from aspects that need customization and tai-
loring to the specific application preferences. It allows de-
velopers to select real-time policies and QoS aspects to be
applied to the server and the client side. It includes capa-
bilities to configure CPU policies, communication policies
and distributed middleware end-to-end.

QuO allows the specification of QoS constraints, sys-
tem monitoring and adaptability according to changes in
system current state. All QuO facilities are enclosed in
Qoskets, behavior units for reuse that can be deployed in
CIAO components.

The CIAO/QuO approach separates application com-
munication into functional paths and QoS systemic paths.
Functional paths are flows of application specific for infor-
mation between client and server. QoS systemic paths are
responsible for determining how well the functional inter-
actions behave between client and server with respect to
QoS properties set by the developer.

The real-time handling provided by this approach focus
on one client-server communication. Although it allows
one to configure both sides of this communication, it can

Workshop on Quality of Service for Application Servers - WQSAS 2004



at most assure a best effort behavior concerning the satis-
faction of constraints imposed by the client.

It is important to notice the way real-time constraints
are dealt with in both approaches. Cadena, despite of being
a moddeling tool, provides a full application view. It en-
velopes server and clients in its development environment
providing the application timing behavior. CIAO/QuO by
the other hand, works in the communication aspect only.
Although it is capable to configure client and server, it is
not able to assure the complete application behavior.

As Cadena, CIAO and QuO approaches are developed
upon existent technologies, what makes possible to explore
runtime aspects towards real-time behavior in distributed
environment during execution. Yet, these approaches are
based on a general purpose component model. There is a
separation between the approaches investigating the early
steps of real-time component-based development and the
ones addressing timing behavior at runtime. It is expected
that the progress of researches will converge the many ap-
proaches towards complete real-time component-based de-
velopment proposals.

5. Acceptance Test

In this section we propose a scheduling approach based on
acceptance test for component-based real-time systems. It
is assumed an open system, that is, clients are known only
when their requests arrive at a the server side component.
We chose to use containers in order achieve greater benefits
from the reuse property of component based development.

Considering component-based development, after com-
ponents design and implementation, they must be deployed
and then executed. Connections between the server com-
ponents may be established during system deployment
(static bind) . These connections are predicted during sys-
tem assembly, or even before, in earlier stages. Therefore,
at pre-runtime the set of components that provide one ser-
vice may have informations such as WCET, dependence or
precedence relations between each other. Tools to verify
dependence relationship among components are already
available in Cadena, for instance.

However, only at runtime connections (dynamic bind)
between clients and server takes place and clients may re-
quest the services provided by the server. For real-time
purposes, these requests must also inform the server about
the timing constraints this service must obey. This is how
server components will base their execution in an attempt
to satify all the clients requests and timing constraints.

Before the client become capable of requesting services,
the connection between this client and the server compo-

nent must explicity take place. At the bind time, the server
has not yet accepted the client, and the client can provide
all the timing information the server needs to judge its ca-
pacity to perform this client requests. At this moment,
the server is able to consider the client timing constraints,
its own timing properties (WCET, components methods
precedence relation and dependence) and the server current
state (resources availability and current workload). There-
fore, the dynamic guarantee is made possible through the
application of an acceptance test at bind time.

Real-time dynamic guarantee approach is based on an
acceptance test to verify the schedulability of the set com-
posed by a newly arrived task and the tasks previously ac-
cepted by the system. The acceptance tests are based on
worst case hipothesis analysis considering timing parame-
ters. This approach was developed for critical systems that
operate in non deterministic environment.

An acceptance test [14] could be implemented by the
server components containers, requiring no aditional func-
tionality from the component. The acceptance test would
be a new container responsability as all the others concern-
ing real-time aspects. The server could accept or not the
new client considering the guarantee of older (already ac-
cepted) clients constraints.

The parameters used by an acceptance test would be
captured at two moments of the application lifecycle. Let’s
consider components C1, C2 and C3 from a given server
and a service S provided by the sequence of methods
C1.m2, C2.m5 and C3.m1. At the application server de-
ployment time, its components are connected to each other.
So, during the static bind of components C1, C2 and C3
information, as WCET about the methods they implement
could be provided. Through the components ports connec-
tions, dependence relationships would be established. By
the end of deployment step, all the server provided ser-
vices would be mapped to component methods sequences
of execution. So, from the arrival of a service request, the
possible components and methods to be executed could be
figured. These components would be the ones negotiant-
ing the acceptance of a newly arrived client request in the
server.

At runtime, candidate new clients should submit their
bind request together with their timing constraints to the
server components acceptance test. Timing constraints ex-
amples would be: a deadline for each service request and a
minimum time interval between service requests. If the
S is the service required, components C1, C2 and C3
would be appointed to apply the test. Based on the client
request timing constraints and their own workload upon
methods C1.m2, C2.m5 and C3.m1, these components

Workshop on Quality of Service for Application Servers - WQSAS 2004



should reach a result and allow or discard the client bind
request. Once accepted, the server would garantee all ac-
cepted clients timing constraints accomplisment.

Concerning the issues described in section 3, our pro-
posal adopts containers and considers an open system.
Also, in order to make possible an acceptance test imple-
mentation as proposed, communication latence and WCET
informations, as well as clock sinchronization will be nec-
essary.

The proposed approach addresses the gap emphasized
in Figure 1, dynamic guarantee is not provided in any of
the runtime proposals described. Different from Cadena,
dynamic guarantee is intended to provide flexibility to the
system, new clients may be accepted at runtime. Although
this proposal does not address clients configuration, as
happens in CIAO/QuO, it would provide better application
timing behavior since it can assure at least the timing con-
straints of accepted clients instead of providing best effort
only, for all clients.

6. Conclusion

Component-based development presents advantages desir-
able in real-time systems. However, conventional com-
ponent models are incapable of providing essential fea-
tures of real-time systems. Despite of the many component
models that started to be developed, there is still the lack
of models that focus real-time components runtime. Most
of the proposals are concentrated in pre-runtime aspects:
component architecture and initial building and configu-
ration steps. The runtime behavior has not been well ex-
plored.

One research opportunity is the real-time component-
based development including dynamic guarantee. The dy-
namic guarantees can be provided by applying an accep-
tance test at bind time, at the moment a client bind request
is received by the server.

The container may be used to manage the acceptance
test at runtime. This capability assigned to the container
does not interfere with the common used component tech-
nology structure: the component contains only the code
related to the application logic. The container manages all
other aspects related to assure component functioning ac-
cording to its configuration, including timing aspects.

The containers managing components which work to-
gether to provide one service must be able to decide (as a
whole) if they are capable of providing the service accord-
ing to time constraints imposed by the client request. The
decision made by the set of containers considers (beyond
the request constrains) the component WCET and the com-

ponent and host workload. Each container must be capable
of applying the acceptance test to the request and then to
allow or not the new client connection.

The acceptance test of new clients depends on the com-
ponent behavior required by the client and the server ca-
pacity. The negotiation among server components is nec-
essary to guarantee service provision. The behavior spec-
ification demanded by a client bind request may be set
through QoS contracts that would include timing param-
eters such as deadline and minimum time interval between
service requests. This scheduling approach provides dy-
namic guarantee and it complements the other two ap-
proaches (offline guarantee and best effort) already pro-
posed in the literature.

Dynamic guarantee in real-time component-based sys-
tems is a promising approach towards predictability in
these systems. The other two real-time scheduling ap-
proaches imposes strict limitations to the system. It is our
objective to continue exploring this approach towards real-
time component-based systems that provides timing guar-
antee in applications with some flexibility.

References

[1] Pecos project. http://www.pecos-project.org/.

[2] Sun microsystems, java 2 platform enterprise edition.
http://java.sun.com/j2ee/.

[3] Corba component model.
http://www.omg.org/technology/documents/formal/
components.htm, June 2001.

[4] CHEN, D., MOK, A., AND NIXON, M. Real-time sup-
port in com. In in Proceedings of the 32nd Hawaii
International Conference on System Sciences (Maui,
Hawaii, USA, January 1999), Emerging Technologies.
IEEE Computer Society,. Emerging Technologies.

[5] FREDRIKSSON, J., AKERHOLM, M., SANDERSTROM,
K., AND DOBRIN, R. Attaining flexible real-time sys-
tems by bringing together component technologies and
real-time systems theory. In 29th Euromicro Conference
(Turkey, September 2003).

[6] HATCLIFF, J., DENG, W., DWYER, M. B., JUNG,
G., AND RANGANATH, V. Cadena: An integrated de-
velopment, analysis, and verification environment for
component-based systems. In ICSE 2003 (Oregon,
2003).

[7] KO, R., AND MUTKA, M. W. A component-based ap-
proach for adaptive soft real-time within heterogeneous
environments. In the special issue of Parallel and Dis-
tributed Computing Practices (September 2003). vol 5,
no 1.

Workshop on Quality of Service for Application Servers - WQSAS 2004



[8] LOCKE, C. D. Best-effort decision-making for real-time
scheduling. PhD thesis, 1986.

[9] LUDERS, F. Adopting a software component model in
real-time systems development. IEEE Computer Society
Press. 28th Annual NASA/IEEE Software Engineering
Workshop.

[10] NOLTE, T., MOLLER, A., AND NOLIN, M. Us-
ing components to facilitate stochastic schedulability
analysis. 24th IEEE Real-Time Systems Symposium
(RTSS’2003), Work in Progress Session.

[11] RAMAMRITHAN, K., AND STANKOVIC, J. A. Schedul-
ing algorithms and operating systems support for real-
time systems. In Proceedings of IEEE (January 1994),
pp. 55 – 67.

[12] RAMAMRITHAN, K., AND STANKOVIC, J. A. Schedul-
ing algorithms and operating systems support for real-
time systems. vol. 82, pp. 55–67.

[13] SCHMIDT, D., LEVINE, D. L., AND MUNGEE,
S. Goal. the openccm platform. http: //cor-
baweb.lifl.fr/OpenCCM/, 2002.

[14] S.LIU, J. W. Real-Time Systems, 1st ed. Prentice Hall,
2000.

[15] TEŠANOVIĆ, A., NYSTRÖM, D., HANSSON, J., AND

NORSTRÖM, C. Aspects and components in real-
time system development: Towards reconfigurable and
reusable software. Journal of Embedded Computing
(February 2004).

[16] VAN OMMERING, R., VAN DER LINDEN, F., AND

KRAMER, J. The koala component model for consumer
eletronics software. IEEE Computer (March 2000).

[17] WANG, N., SCHMIDT, D. C., AND GOKHALE, A. Total
quality of service provisioning in middleware and apli-
cations. In Elsevier Journal of Microprocessors and Mi-
crosystems (January 2003). vol.26, number 9-10.

[18] XU, J., AND PARNAS, D. L. On Satisfying Timing Con-
straints in Hard Real-Time Systems. IEEE Transactions
on Software Engineering 19 (January 1997), 70–84. No
1.

[19] YAU, S., AND TAWEPONSOMKIAT, C. Component cus-
tomization for object-oriented distributed real-time soft-
ware development. In ISORC 2000 (2000).

[20] YAU, S., AND TAWEPONSOMKIAT, C. An approach
to object-oriented component customization for real-time
software development. In Proceedings of the Fifth IEEE
International Symposium on Object-Oriented Real-time
Distributed Computing (ISORC 2002) (2002).

[21] ZINKY, J. A., BAKKEN, D. E., AND SCHANTZ, R. E.
Architectural support for quality of service for corba ob-
jects. Theory and Practice of Object Systems 3, 1 (1997).

Workshop on Quality of Service for Application Servers - WQSAS 2004


