
An Adaptive Model for Programming Distributed Real-Time Applications in
CORBA

Carlos Montez1 Rômulo Silva de Oliveira2 Joni Fraga1

 montez@lcmi.ufsc.br romulo@inf.ufrgs.br fraga@lcmi.ufsc.br
1LCMI - Depto de Automação Sistemas - Univ. Fed. de Santa Catarina

Caixa Postal 476 - 88040-900 - Florianópolis - SC - Brazil
2Inst. de Informática - Univ. Fed. do Rio Grande do Sul

Caixa Postal 15064 - 91501-970 - Porto Alegre - RS - Brazil

Abstract
CORBA is a middleware with open standardization

that is receiving plenty of acceptance for facilitating the
distributed objects programming. CORBA is being
extended through the specification of interfaces and
necessary abstractions for supporting applications with
real-time constraints. The use of CORBA in the
contemporary real-time systems is adequate to meet the
new requirements of flexibility and cost reduction in
these systems. The new abstractions included in the
CORBA specifications will enable a variety of
programming models for real-time applications. This
paper presents an adaptive programming model for
distributed real-time applications using CORBA
concepts.
Keywords: Distributed systems, Real-time systems,
CORBA, Real-time objects, Adaptive computing.

1. Introduction

CORBA (Common Object Request Broker
Architecture) is a middleware that objectives minimizing
existing difficulties in distributed programming for
heterogeneous environments. Its open specifications,
standardized by OMG (Object Management Group), are
receiving growing acceptance. The architecture of
reference specified by the OMG [7] is composed by an
ORB (Object Request Broker) and services and facilities
objects. The ORB is responsible for managing
transparently the communications among distributed
objects. The services and facilities are standardized
objects that support some basic functions used by the
application objects.

Many distributed real-time systems are adopting the
object orientation paradigm and using the CORBA
concepts for building its programs. The final objective is
to meet the new needs of portability, interoperability,
flexibility and cost reduction of the contemporary real-
time systems.

The use of CORBA, as well as other open

architectures, in distributed real-time systems is a recent
area of research. In spite of that, that tendency comprises
a large range of applications, involving from systems
that interacts with deterministic environments, such as
embedded applications and control of processes; as well
as large scale systems, characterized by a dynamic
computational load, such as multimedia applications in
the Internet. Many of those application domains require
real-time guarantees (off-line or on-line) of the networks,
operating systems and middleware components, in the
sense of supporting its time constraints. However, in the
current specifications, CORBA standards are inadequate
to support real-time requirements.

In 1995, a Special Interest Group (SIG) has been
formed within the OMG with the goal of extending the
CORBA standard with support for real-time applications.
The final specification, product of that standardization
effort, will be adopted in the second semester of 1998.
That final specification is intended to present several
abstractions (interfaces and mechanisms) enabling the
execution of real-time applications, allowing the
definition of a variety of real-time programming models.

The study described in this paper is part of a research
we are conveying with the objective of developing a
programming model for distributed real-time
applications using CORBA. The proposed model has
adaptive characteristics in the sense that some
scheduling decisions are based on the conditions of the
system observed through monitoring. The adaptive
technique of imprecise computation is implemented
using multiple versions of methods. The model can be
used in both deterministic or best-effort approaches. In
deterministic environments, a minimum guarantee can
be offered to the applications and the adaptation can be
seen as a form of offering an additional quality in the
services. In environments that does not offer
predictability, in best-effort approaches, the adaptive
characteristic of the model can be seen as a form of
replying to the dynamic variation of the environment,
obtaining several levels of quality in the offered services.

XVIII International Conference of the Chilean Computer Science Society - SCCC'98

We are building the scheduling approach using the
services and concepts that will be incorporate in the final
CORBA specifications for real-time programming. The
concepts of interceptors, threads management and
explicit binding, for example, are used for monitoring
invocations and to implement adaptive techniques.

This paper is divided in 6 sections. Section 2
describes some of the difficulties found for the execution
of real-time applications using the current specifications
of CORBA. It is also shown some of the main features
that will be incorporate in the final specifications of real-
time CORBA. Section 3 presents a discussion on
adaptive models. Section 4 describes the proposed
model. Section 5 lists some other researches related to
ours model. Finally, section 6 presents the conclusions
and indicates future directions of our works.

2. CORBA specification for real time

The key factor that makes CORBA not suitable for
real-time execution is the fact that ORB, services and
facilities objects, defined according to the current
specifications, are not prepared for working with time
constraints. CORBA was created targeting applications
in general that desire transparency in distribution and in
the way resources are managed. On the other hand, those
transparencies in real-time applications, are not desirable
neither necessary. For example, location and migration
transparencies of objects usually are not appropriate for
real-time applications.

The interoperability problem involving different
ORBs is solved in CORBA by specifying an
interoperability protocol for Internet — the IIOP
(Internet Inter-Orb Protocol). That protocol is designed
for general purpose systems, sending messages in
standardized formats using TCP/IP connections. The
lack of predictability features in TCP makes the IIOP an
inadequate protocol for several real-time applications.

Also, CORBA doesn't have some characteristics for
real-time programming, such as invocation with timeout.
Besides, the oneway invocation in the current standard
with asynchronous semantic, is insufficient for the needs
found in real-time programming.

The lack of middleware support for real-time
applications, lead the OMG in 1995 to create a work
group with the objective of extending the CORBA
standard (the RT-CORBA). In September of 1997 a RFP
(Request for Proposal) document [6] was published
requesting proposals of standardization. In January of
1998, five proposals [1-5], result of the two year-old
efforts, were presented. Those proposals will compose
one standard that will be consolidated until the end of
1998.

The proposals emphasize the definition of ORB
mechanisms instead of policies. The specification of a

select group of policies probably would not satisfy all
the real-time applications. On the other hand, the
definition of mechanisms allows the composition of
specific policies for each application. All five proposals,
in spite of their differences in interfaces and in the use of
some concepts, offer several mechanisms and
abstractions in common, that were suggested originally
in the RFP document. Some of those mechanisms are
used in our programming model.

The main mechanism proposed for ORB with the
objective of enabling the construction of adaptive
execution environments to the specific needs of an
application is the interceptor. Interceptors are application
objects that have its operations called by the ORB in
different instants of an invocation. An interceptor in the
client side is activated when an invocation is made and
when the answer is received from the server. An
interceptor in the server side, is activated when an
invocation is received and when the answer is sent. The
interceptor was initially specified in the CORBA
security service, and recently was standardized by OMG
in the CORBA 2.2 [7]. The proposals for RT-CORBA
(real-time CORBA) extends the interceptor interfaces,
creating other interceptors categories, in the object
adapter, the transport layer and in the threads
management.

Threads, pool of threads and request queues are some
resources that applications can reserve and manipulate
directly. For example, a pool of threads can be created to
execute the requests of methods received by a server. A
request queue can be created and associated with that
threads pool. The ordering in those queues can be
specified as FIFO, based on global priorities, or any
other policies specified in the application and
implemented through the interceptors mechanism.

The notion of explicit binding, presented in the
proposals, relates to the establishment of an association
(a communication path) between clients and servers
objects. During the binding, several steps must be made
to interconnect the objects, such as, to locate target
objects and to initialize structures of data that support
the communication among objects. On the client side,
the binding can be used to guarantee that its timeliness
requirements are respected. For example, through the
selection of an appropriate transport protocol and of a
timeout value for fails detection. On the server side, the
binding allows that the necessary resources, such as
threads and queues, for the execution of the requests, are
allocated.

3. Adaptive models

The need of strict predictability in hard real-time
systems, where all the deadlines must be satisfied,
implies in limited programming models. In this case,

XVIII International Conference of the Chilean Computer Science Society - SCCC'98

almost the decisions are generally made off-line. Those
models assume that the worst case of using resources
(CPU, disk access, messages delays, etc.) are defined
and known before execution. For example, the
determination of the worst case execution time (WCET)
of tasks is an arduous work that demands a priori
knowledge of the execution environment. It can be only
determined analytically by means of restricting the use
of certain dynamic constructions of programming
languages (recursive call, for example). Using
simulations for determining the WCET does not
guarantee that the worst cases were really obtained.

The reservation of resources necessary in hard real-
time systems leads to a great sub-utilization of resources.
That is a “price to be paid” for the guarantee obtained by
those systems. On the other hand, in soft real-time
systems, tasks can receive a best-effort approach to meet
its time constraints. A simple example of best-effort
approach is the use of average time of computation in
the timeliness analysis of the system, accompanied by
the discard of tasks when necessary. That approach
results in a better use of resources, under the restriction it
eventually loses deadlines.

There are systems with hard real-time constraints that
operate for long periods in non deterministic
environments. Military, radar and air traffic control
exemplify some of those systems. They should possess
both a previsible and a dynamic and flexible behavior,
using techniques that allow adaptations to the changes
imposed by the non deterministic environment.

The imprecise computation [18] is one technique
found in the literature that allows the combination of
deterministic guarantee with graceful degradation in the
occurrence of overload. That technique separates
computation in a mandatory and an optional part. The
mandatory part, off-line guaranteed, is capable of
generating a result with a minimum quality, while the
processing of the optional part refines this result. During
an overload, a “minimum” level system operation can be
guaranteed in a deterministic way by executing only the
mandatory parts.

The scheduling approaches where decisions are taken
dynamically, according to results of the environment
monitoring, as is usually done in the imprecise
computation technique, are denominated adaptive
scheduling. A series of adaptive approaches are being
proposed with the same objective of the imprecise
computation: guaranteed services and graceful
degradation [8-12]. Besides the already mentioned
difficulty in the obtaining of WCET, some other reasons
can be listed for the use of adaptive approaches:
i) Tasks with real-time constraints define a range of

values for its periods and deadlines where it operates
in a satisfactory way. Furthermore, in a distributed
real-time system, tasks impose time constraints values

in end-to-end basis. It is an engineering work to
attribute intermediary values [20]. Conventional
approaches of real-time scheduling usually fastens
some values as if these were the only ones possible
for the correct operation of the application.

ii) Some real-time periodic tasks tolerate the eventual
losses of some deadlines if those losses are spaced
[11]. For example, in anti-locking brake systems, a
real-time task typically determines the beginning of a
lock, repetitively monitoring the speed of each wheel.
In the case of missing a periodic activation deadline,
it is possible to determine the speed of a wheel,
projecting the obtained values of the previous
activations of the task.
The existent approaches for soft real-time tasks, such

as those used in multimedia, generally are not
appropriate to be used in other types of real-time tasks
because the predictability obtained is very precarious.
The main objective of the new adaptive approaches is to
obtain deterministic predictability in normal conditions
of operation, and a controlled service degradation during
an overload.

Those adaptive approaches bring some additional
benefits, because its use make possible the supply of
dynamic guarantees. For example, it may be assumed
that tasks can arrive dynamically and need guarantees
before beginning to execute. In the case of not being
possible to accept those tasks, instead of rejecting them
(as it happens in conventional admission tests), the
system can accept them by degrading other services of
some previous accepted tasks. Such approach is
proposed in [8].

The technique of imprecise computation considers a
model of tasks where the obtained benefits increase
when tasks receive larger times of computation. The new
approaches of adaptive scheduling, in general, enlarges
that concept also considering models of tasks where the
benefits obtained increase when tasks are activated more
frequently. That characteristic comes from the direct
observation that control application tasks have freedom
to operate in a range of frequencies. For example, in
tracking applications, the more close it is the vehicle
tracked by the radar, bigger should be the frequency of
the tasks that maintain the data [11]. Multimedia
applications also use that idea. In audio transmissions it
is possible to improve the obtained quality by increasing
the sampling rate.

Adaptive techniques as the imprecise computation
and the task frequency manipulation try “to combat” the
cause (overload) and not “to minimize” its symptoms in
the occurrences of temporal failures. Reducing the
occurrence of overloads also reduces its consequences:
deadlines losses, discard of messages in the
communication support, discard of periodic activations
of tasks, and (complete) discard of tasks.

XVIII International Conference of the Chilean Computer Science Society - SCCC'98

4. An adaptive programming model for
RT-CORBA

The final specification of real-time extensions for
CORBA will present several abstractions (interfaces and
mechanisms) enabling the execution of real-time
applications. Those abstractions will allow the building
of a variety of real-time programming models — from
deterministic to best-effort models. This text presents the
APMC (Adaptive Program Model for CORBA) — a
adaptive model based on real-time objects to be used in
CORBA.

4.1 Real-time objects

In spite of CORBA being a distributed object
architecture, it does not demand the use of object
oriented models and programming languages. However,
the object paradigm, used in many areas of computing,
also presents several attractiveness for distributed
programming, making natural the development of
several models of distributed objects. In the context of
distributed real-time systems, the object paradigm also
presents several advantages, facilitating the
understanding and management of the complexity of
those systems, leading to the recent development of
several distributed real-time objects models [13-15].

The APMC is an object oriented model that supplies
an integrated vision, where methods and abstractions of
conventional objects can be used also by the real-time
objects, and vice-versa. That characteristic allows code
reutilization, and increasing of the productivity. It allows
real-time applications to use some conventional services
such the CORBA name service and trading. However, it
is important to note that in the requests of methods
involving conventional objects, it is not possible to
specify and enforce time constraints, even if the requests
are done by real-time objects.

4.2 Meta-object protocols

APMC offers a clear separation between the
functional and the timeliness aspects in the
implementation of a real-time object, allowing real-time
objects to be reused easily with other timeliness
constraints. That is possible through rewriting the code
that implements the timeliness aspects. Besides, real-
time objects can be reused in the form of conventional
objects, discarding the part of the code that treats the
timeliness aspects. It is also possible to reuse
conventional objects. They can be wrapped in real-time
objects, by writing the code about the timeliness aspects.

The separation between concerns of functional
aspects (structural) from non-functional aspects
(behavior), allows a better code reutilization, and
facilitates the development of complex systems. The
functional properties of the application can be

programmed by people that understand the application,
while the programming regarding real-time scheduling,
fault tolerance, synchronization, and so on, can be driven
by programmers specialist in those areas [21].

The separation of functional from timeliness aspects
is made using the computational reflection paradigm,
and is implemented using meta-object protocols. A
reflective system is a system that incorporates structures
that represent and implement aspects of itself. The meta-
object model introduced in [19] explicitly separates
objects in different levels: base and meta (Figure 1). For
each real-time object, a meta-level object exists (meta-
object) that implements the behavior aspects (time
constraints) of the object in the base level (base object).

meta-
object

base
object

conventional
object

real-time object

���� �����

��	� �����

base
object

Figure 1. Conventional and real-time objects
in the model APMC.

The meta-object is activated when receiving a request
of a method driven to its respective base object. The
request is intercepted and deviated to the meta-object
that may execute some computations in the meta-level
objectifying to meet the timeliness of the activated
method (Figure 2). Later on, the meta-object can send
the request for the method of the base object activated
originally. APMC supports both synchronous (request-
reply) or asynchronous (request-only) interactions among
objects. In the case of the synchronous interaction, the
reply of the base object server can also be intercepted
and deviated for the meta-level, before it returns to the
client that made the request (only in the case of the
computation made in the meta-level not deciding to raise
an exception, instead of returning the reply to the client).
When necessary, on the client side, the meta-object can
be activated in the moment that the request is done, and
also when the reply (in the case of synchronous
interaction) or exception is received.

The requests interception allows pre-processing and
pos-processing for the meta-level in the sense of
controlling the timeliness requirements (or other
behavioral aspects) specified by the programmer.
However, some applications may be interested on the
interception of other events during the processing of base
object methods. For example, if computational reflection
is used with the objective of monitoring the behavior of
a certain application, the interception of requests is not
enough because it represents a big granularity in the

XVIII International Conference of the Chilean Computer Science Society - SCCC'98

monitoring. Ideally, one should monitor each state
change of the threads that execute the methods of the
base objects. The model APMC allows a meta-object to
be activated at each change in the state of the method
(thread) of the corresponding base object. That feature is
optional for representing an overhead that must be
accounted in the computation times of involved methods
in base object.

requests for real-time
objects are deviated for
the meta-object.

���� �����

��	� �����

meta-
object

base
object

Figure 2. Requests for a real-time object.

The new interceptor categories, that will be
incorporated in CORBA, are important for the
implementation of meta-objects in the APMC model.
Server interceptors are used for catching requests to the
methods of the base objects and to deviate for the meta-
object. Thread interceptors are responsible for
monitoring changes of state of the threads that execute
the methods in the base objects.

4.3 Active and passive methods

Objects in the APMC model possess methods that can
be active or passive. Passive methods are only executed
when receiving requests (synchronous or asynchronous)
of other methods. The active methods already possess a
thread of execution, and they are executed since the
moment the object is created.

An object can have internal concurrence in its
methods through the declaration of more than one active
method. However, the race conditions control in the
access of shared resources inside the object, are a subject
that shall be treated by the application code and it
doesn't constitute a concern of the model APMC. The
conventional concept of active object, can be
implemented in the model APMC through the
declaration of one active method in each object.

Real-time objects can implement time-triggered tasks
(periodic activations of an active method) in the meta-
level. Passive methods may be used to implement event-
triggered tasks, that are activated through external events
(arrival of requests). Time-triggered and event-triggered
methods can model several types of interactions found in
real-time applications. For example, in control
applications some tasks usually are responsible for
monitoring periodically values of sensors and resending
the results to other tasks that are responsible for
activating tasks that control certain devices. Those
applications can be modeled considering the methods

that monitor the sensor as active time-triggered methods
and the others as passive event-triggered methods
(Figure 3).

timer-triggered
method

send
message

send
message

controls the
device

monitors
periodically
the sensor

calculates the
control action

event-triggered
method

event-triggered
method

Figure 3. Control application modeled using
active and passive methods.

Several other kinds of interactions among distributed
tasks, such as the traditional client/server and
producer/consumer, can also be modeled by using active
and passive methods.

The new standardized interface for managing threads
in the real-time ORB specifications, will allow a larger
portability in the implementation of active and passive
methods. The treatment of the threads will be done in an
uniform way, even if the execution platform has Solaris,
NT, or POSIX.1c threads. Each declared active method,
will have a thread allocated for itself in the moment that
the object is created. Each passive method will (i) be
executed in the thread of the active method that
originated the request, or (ii) have its thread created
dynamically at the moment of the arrival of the request,
or (iii) have its thread removed from a pool previously
allocated.

The option (i) will happen whenever an active method
makes request to a passive method in the same object.
The options (ii) or (iii) represent alternatives in the form
of activating a passive method when the request is
originated from another object. The option (iii) is faster
and with more predictability (when the number of
existent threads in the pool is enough to treat all the
simultaneous requests for the passive methods of the
object).

4.4 Adaptation in the APMC

The technique of imprecise computation through
multiple versions can be easily implemented in the
model APMC. In an implementation form (denominated
in [13] as time polymorphic invocation), several methods
are implemented in the base object offering the same
service with different quality levels (QoS) and,
consequently, with different processing times associated.
When intercepting a request, the meta-object of the
server can select alternative methods in the base object
depending on the conditions of the moment (for

XVIII International Conference of the Chilean Computer Science Society - SCCC'98

example, a client deadline for the request).
Figure 4 represents an example of a control

application implemented using the multiple versions
technique. The request-only (without reply) sent by the
active time-trigger method that monitors the sensor is
reflected for the method in the meta-object that selects
the base method implementation dynamically, according
to the current conditions.

...

...
request-only

meta-object
selects “on the
fly” the method

in the base
object

monitors
sensor

calculates control

controls
device

Method II

Method I

Method n

Figure 4. Control application implemented using
multiple versions.

In environments that offer predictability, “Method I”
could represent a method that returns a minimum
acceptable quality (guaranteed off-line by schedulability
analyses), while the other methods could represent better
quality levels for the control. In environments without
predictability, each method could represent a growing
level of quality, however the application will not receive
any guarantee of a “minimum operation”.

The concepts of interceptors, pool of threads and
request queue that will be incorporated to the real-time
ORB are important for the implementation of adaptive
mechanisms in APMC. A pool of threads is created in an
object server and associated to a request queue. A server
interceptor is responsible for receiving and deviating the
requests for the meta-object. The requests deviated for
the meta-object are queued in the request queue. The
server interceptor sort (schedule) the queue in
accordance to a specific policy. The threads catch the
requests of the top of the queue and execute them in
behalf of the client.

The global priority concept [17] can influence the
policies of ordering the request queues and of the
dynamic attribution of priorities to the threads. For
example, a client can dynamically specify time
constraints for the invocation, just as a deadline. Those
time constraints are used for calculating the global
priority value of the request. That global priority value is
used for scheduling the method (thread) executed in the
server.

4.5 Predictability in the APMC

Due the existence of large and complex systems and
the heterogeneity of theirs components, the use of

distributed real-time systems in CORBA may be
confused with one presenting dynamic load and
executing on a hostile environment. However, CORBA
can also be applied in static systems, characterized by a
priori knowledge of the computational load and of the
available resources for execution. In those conditions the
execution of time critical applications is possible.

To obtain predictability in a distributed system is
necessary a notion of global time and a maximum delay
for communication among objects. New technologies,
like GPS receivers (for obtaining a global time based on
UTC), ATM networks (that allow the specification of
QoS parameters) and POSIX.1b and POSIX.1c
specifications (that standardize several real-time
mechanisms in the operating system level) enable to
obtain predictability in distributed systems. APMC can
be used with those technologies in the sense of obtaining
predictability in the execution of a real-time system.

New CORBA abstractions, incorporated in the
specifications of real-time ORB, are also valuable for
obtaining deterministic predictability. For example, the
explicit binding concept allows objects to determine a
priori the communication maximum delays. That aspect
is fundamental to allow an off-line schedulability
analysis of the system.

5. Related works

The DHDA project [17] was the pioneer work in the
sense of establishing the needs of real-time in CORBA.
It influenced plenty the work of OMG. It specifies a
best-effort approach to support end-to-end time
constraints in a dynamic environment, with objects being
added and removed, and with changing timing
constraints.

TAO [16] is a real-time ORB that, in deterministic
environments with fixed load, can offer deterministic
guarantee enabling the execution of hard real-time
applications. The CORBA IDL is extended to allow the
description of timing constraints associated with each
method in interface declarations. A real-time scheduling
service is implemented using the rate monotonic policy,
considering only independent threads.

RTRD [14] uses meta-object protocols on CORBA,
allowing applications to control its functionalities based
on its timeliness requirements. That quite flexible model
can work with several types of timing constraints that are
specified by the applications. The best-effort approach
considers only soft real-time tasks.

In [12], CORBA interceptors are used to monitor
requests to CORBA objects, and the result of that
monitoring feedbacks an adaptive scheduling approach
(task-pair scheduling). The task-pair scheduling is an
implementation of the imprecise computation with two
versions. During the execution of one of the versions, the

XVIII International Conference of the Chilean Computer Science Society - SCCC'98

monitoring results can lead to the decision of canceling
the execution and executing other version with a small
code that represents an exception treatment.

The QuO project [10] establishes a programming
model that extends the IDL CORBA to allow the
specification of routines for treatment of changes in the
execution environment conditions. The objective is the
implementation of very adaptive applications that can
execute totally in dynamic environments as the Internet.

The model APMC incorporates several characteristics
of those works. Differently of [10], [14], [16] and [17],
the APMC embraces both applications that need best-
effort guarantees with adaptive characteristic, and
applications that need deterministic guarantees. The
model in [12] is similar to APMC, except that it does not
use the new real-time ORB mechanisms. An important
characteristic of the APMC is that it does not present any
proposal of extension to the CORBA standard. The
APMC is totally integrated with the new real-time
CORBA specifications that are being standardized by
OMG.

6. Conclusions

With the appearance of new abstractions offered by
the real-time ORB that is being specified by OMG,
several kinds of models for real-time applications
programming can be developed. This paper presented the
APMC — an adaptive object oriented model for real-
time programming in CORBA. The APMC allows the
implementation of adaptive approaches through the
incorporation of the time polymorphic invocation
technique. That technique can be used both in
deterministic and best-effort approaches. The separation
between the implementation of functional aspects and
the real-time constraints is made using computational
reflection, defining explicitly separated levels: base and
meta. The programmer can implement the specific
timeliness requirements of its application in the meta-
object of each real-time object.

Now, the main effort in our project is to adapt a
complete scheduling framework to our model. We are
interested that the framework allows the programmer to
specify execution patterns in the form of imprecise
computation and (m,k)-firm guarantees [9]. We are also
studying, as a secondary objective, a way to incorporate,
other adaptive techniques, like variations in the
activation frequency of time-triggered methods.

7. References

[1] Alcatel, HP, Lucent, OOC, Sun, Tri-Pacific, “Realtime
CORBA - Version 1.0”, Object Management Group
(OMG), Document orbos/98-01-08, Jan. 1998.

[2] Northern Telecom, Iona Technologies, “Realtime
CORBA Extensions”, Object Management Group (OMG),
Document orbos/98-01-09, Jan. 1998.

[3] Highlander Communications, Visigenic Software,
“Realtime CORBA”, Object Management Group (OMG),
Jan. 1998.

[4] Lockheed Martin Federal Systems, “Realtime CORBA,
Response to OMG RFP for Realtime CORBA
Extensions”, Object Management Group (OMG),
Document orbos/98-01-04, Jan. 1998.

[5] OIS, “Realtime CORBA, Initial Submission”, Object
Management Group (OMG), Jan. 1998.

[6] OMG Realtime Platform SIG, “Realtime CORBA 1.0
RFP”, Object Management Group (OMG), Document
realtime/97-09-31, Sep. 1997.

[7] OMG, “The Common Object Request Broker:
Architecture and Specification - Revision 2.2”, Object
Management Group (OMG), Feb. 1998.

[8] T. Abselzaher, E. Atkins, K. Shin, “QoS Negotiation in
Real-Time Systems and Its Application to Automated
Flight Control”, Proc. of IEEE RTAS´97, Montreal,
Canada, Jun. 1997.

[9] P. Ramanathan, “ Graceful Degradation in real-time
control applications using (m, k)-firm guarantee”, Proc. of
Fault-Tolerant Computing Symposium, 1997, pp. 132-141.

[10] J. A. Zinky, D. E. Bakken, R. D. Schantz, “Architectural
Support for Quality of Service for CORBA Objects”,
Theory and Practice of Object System, Vol. 3(1). 1997.

[11] T. Kuo, A. K. Mok, “Incremental Reconfiguration and
Load Adjustment in Adaptive Real-Time Systems”, IEEE
Trans. on Computers, Vol. 46, No. 12, Dec. 1997.

[12] M. Gergeleit, E. Nett, M. Mock, “Supporting Adaptive
Real-Time Behavior in CORBA”, Proc. of 1st IEEE
WMDRTSS, San Francisco, CA, Dec. 1997.

[13] K. Takashio, M. Tokoro, “DROL: An Object-Oriented
Programming Language for Distributed Real-Time
Systems”, Proc. of OOPSLA’92, 1992, pp. 276-294.

[14] O. Furtado, F. Siqueira, J. Fraga, J-M Farines, “A
Reflective Model for Real-Time Applications in Open
Distributed Systems”, Proc. IFIP/IFAC WRTP´96, Brazil,
Nov. 1996.

[15] G. Li, D. Otway, “An Open Architecture for Real-Time
Processing”, APM, Poseidon House, Castle Park,
Cambridge, Document, APM.1270.02, Oct. 1994.

[16] D. C. Schmidt et al., “TAO: A High Performance
Endsystem Architecture for Real-Time CORBA”, IEEE
Communications Magazine, 14(2), Feb. 1997.

[17] V. F. Wolfe, et al., “Expressing and Enforcing Timing
Constraints in a Dynamic Real-Time CORBA System”,
University of Rhode Island, Department of Computer
Science and Statistics, Technical report TR97-252,
Jun.1997.

[18] J. W. S. Liu, W. -K Shih, K. -J. Lin, R. Bettati, J. -Y.
Chung, “Imprecise Computations”, Proceedings of the
IEEE, Vol. 82, No. 1, Jan 1994, pp. 83-94.

[19] P. Maes, “Concepts and Experiments in Computational
Reflection”, Proc. of OOPSLA’87, 1987.

XVIII International Conference of the Chilean Computer Science Society - SCCC'98

[20] R. Gerber, S. Hong, “Guaranteeing Real-Time
Requirements with Resource-Based Calibration of
Periodic Processes”, IEEE Trans. On Software
Engineering, 21(7), Jul. 1995.

[21] P. M. Melliar-Smith, L. E. Moser, P. Narasimhan,
“Separation of Concerns: Functionality vs. Quality of
Service”, Proc. 3.o Workshop on Object Oriented Real-
Time Dependable Systems, Ca, Feb. 1997.

XVIII International Conference of the Chilean Computer Science Society - SCCC'98

